報告時間:2023年8月2日(星期三)10:00-11:00
報告地點:翡翠科教樓A座1603
報 告 人:王璐 教授
工作單位:密西根大學生物統計學系
舉辦單位:計算機與信息學院
報告簡介:
In this talk, we present recent advances and statistical causal learning developments for evaluating Dynamic Treatment Regimes (DTR), which allow the treatment to be dynamically tailored according to evolving subject-level data. Identification of an optimal DTR is a key component for precision medicine and personalized health care. We will first present a tree-based doubly robust reinforcement learning (T-RL) method, which builds a decision tree that maintains the nature of batch-mode reinforcement learning, and then a new Stochastic-Tree Search method called ST-RL for evaluating optimal DTRs, which contributes to the existing literature in its non-greedy policy search and demonstrates outstanding performances even with a large number of covariates. In addition, we consider a common challenge with practical “restrictions” and develop a Restricted Tree-based Reinforcement Learning (RT-RL) method to address this challenge. We illustrate the method using an observational dataset to estimate a two-stage stepped-up DTR for guiding the level of care placement for adolescents with substance use disorder.
報告人簡介:
王璐,博士,現任美國密西根大學生物統計學系終身教授,系副主任。2002年本科畢業于北京大學,2008年博士畢業于哈佛大學。研究領域包括評估優化動態治療方案的統計方法、個性化醫療、因果推斷、非參數和半參數回歸、缺失數據分析、以及縱向(相關/聚類)數據分析等。在JASA、Biometrika、Biometrics、AoAS等學術期刊上發表論文139余篇,并合著了一章書籍?,F任JASA和Biometrics的副主編。